By Topic

A parallel segmentation of brain tumor from magnetic resonance images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dessai, V.S. ; Inf. Technol. Dept., NITK Surathkal, Mangalore, India ; Arakeri, M.P. ; Ram Mohana Reddy, G.

Medical image segmentation is nowadays at the core of medical image analysis and supports computer-aided diagnosis, surgical planning, intra-operative guidance or postoperative assessment. Large amounts of research efforts have been made in developing effective brain MR (magnetic resonance) image tumor segmentation methods in the past years. However algorithms proposed so far are time consuming because it involves lot of mathematical computations. Also serial segmentation of multiple MRI slices (usually required for 3D visualization) takes exponential time. This results in need for improvement in performance as far as the time complexity is concerned. This paper proposes a methodology that incorporates the K-means clustering and morphological operation for parallel segmentation of multiple MRI slices corresponding to single patient. Segmentation of multiple MRI slices for tumor extraction plays major role in 3D (Three Dimensional) visualization and serves as an input for the same. The proposed framework follows SIMD (Single Instruction Multiple Data) model and since the segmentation of individual slice is independent of each other and can be performed in parallel and multithreading definitely speeds up the entire process. Also the framework does not involve any kind of inter-process communication thus the time is saved here as well.

Published in:

Computing Communication & Networking Technologies (ICCCNT), 2012 Third International Conference on

Date of Conference:

26-28 July 2012