Cart (Loading....) | Create Account
Close category search window

Radial Basis Function Network Training Using a Nonsymmetric Partition of the Input Space and Particle Swarm Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alexandridis, A. ; Dept. of Electron., Technol. Educ. Inst. of Athens, Aigaleo, Greece ; Chondrodima, E. ; Sarimveis, H.

This paper presents a novel algorithm for training radial basis function (RBF) networks, in order to produce models with increased accuracy and parsimony. The proposed methodology is based on a nonsymmetric variant of the fuzzy means (FM) algorithm, which has the ability to determine the number and locations of the hidden-node RBF centers, whereas the synaptic weights are calculated using linear regression. Taking advantage of the short computational times required by the FM algorithm, we wrap a particle swarm optimization (PSO) based engine around it, designed to optimize the fuzzy partition. The result is an integrated framework for fully determining all the parameters of an RBF network. The proposed approach is evaluated through its application on 12 real-world and synthetic benchmark datasets and is also compared with other neural network training techniques. The results show that the RBF network models produced by the PSO-based nonsymmetric FM algorithm outperform the models produced by the other techniques, exhibiting higher prediction accuracies in shorter computational times, accompanied by simpler network structures.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.