By Topic

Transmural Imaging of Ventricular Action Potentials and Post-Infarction Scars in Swine Hearts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Linwei Wang ; Comput. Biomed. Lab., Rochester Inst. of Technol., Rochester, NY, USA ; Dawoud, F. ; Sai-Kit Yeung ; Pengcheng Shi
more authors

The problem of using surface data to reconstruct transmural electrophysiological (EP) signals is intrinsically ill-posed without a unique solution in its unconstrained form. Incorporating physiological spatiotemporal priors through probabilistic integration of dynamic EP models, we have previously developed a Bayesian approach to transmural electrophysiological imaging (TEPI) using body-surface electrocardiograms. In this study, we generalize TEPI to using electrical signals collected from heart surfaces, and we test its feasibility on two pre-clinical swine models provided through the STACOM 2011 EP simulation Challenge. Since this new application of TEPI does not require whole-body imaging, there may be more immediate potential in EP laboratories where it could utilize catheter mapping data and produce transmural information for therapy guidance. Another focus of this study is to investigate the consistency among three modalities in delineating scar after myocardial infarction: TEPI, electroanatomical voltage mapping (EAVM), and magnetic resonance imaging (MRI). Our preliminary data demonstrate that, compared to the low-voltage scar area in EAVM, the 3-D electrical scar volume detected by TEPI is more consistent with anatomical scar volume delineated in MRI. Furthermore, TEPI could complement anatomical imaging by providing EP functional features related to both scar and healthy tissue.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:32 ,  Issue: 4 )