Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

DVB-T Passive Radar Signal Processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Palmer, J.E. ; Defence Science & Technology Organisation, Australia ; Harms, H.A. ; Searle, S.J. ; Davis, L.M.

This paper provides a detailed overview of the Digital Video Broadcasting Terrestrial (DVB-T) signal structure and the implications for passive radar systems that use these signals as illuminators of opportunity. In particular, we analyze the ambiguity function and explain its delay and Doppler properties in terms of the underlying structure of the DVB-T signal. Of particular concern for radar range-Doppler processing are ambiguities consistent in range and Doppler with targets of interest. In this paper we adopt a mismatched filtering approach for range-Doppler processing. We also recognize that while the structure of the DVB-T signal introduces ambiguities, the structure can also be exploited to better estimate the transmitted signal and channel, as well as any mismatch between transmitter and receiver (e.g., clock offsets). This study presents a scheme for pre-processing both the reference and surveillance signals obtained by the passive radar to mitigate the effects of the ambiguities and the clutter in range-Doppler processing. The effectiveness of our proposed scheme in enhancing target detection is demonstrated using real-world data from an (Australian) 8k-mode DVB-T system. A 29 dB reduction in residual ambiguity levels over existing techniques is observed, and a 36 dB reduction over standard matched filtering; with only a 1 dB reduction in the zero-delay, zero-Doppler peak.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 8 )