Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Design, Realization, and Experimental Test of a Coaxial Exponential Transmission Line Adaptor for a Half-Impulse Radiating Antenna

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Vega, F. ; Swiss Fed. Inst. of Technol. of Lausanne (EPFL), Lausanne, Switzerland ; Rachidi, F. ; Mora, N. ; Pena, N.
more authors

This paper describes the simulation, design, realization, and experimental test of a tapered transmission line (TL) for adapting a broad-band impulse generator to a radiating antenna, for a frequency range of 50 MHz-1 GHz. Two different taper geometries are considered and discussed in the analysis: exponential and logarithmic. Two analysis methods are also used: 1) analytical equations obtained by applying the TL theory and 2) full-wave numerical simulations in both frequency and time domains using Comsol. It is shown that, in general, an exponential taper performs better than a logarithmic one, particularly at high frequencies. Time-domain simulations reveal that, for fast transient subnanosecond pulses, both tapers can be used equivalently and the signal does not suffer from any significant distortion while traveling along the tapers. We also show that analytical equations obtained using the TL theory are in very good agreement with full-wave simulation results and can be used advantageously in the design of tapers. This paper also presents the mechanical design and the realization of an exponential taper used for the connection of a 50-Ω pulser to a half-impulse radiating antenna (HIRA) having an input impedance of 100-Ω . The realized taper is fully characterized in the frequency domain using a vector analyzer and in the time domain using a reflectometer and shown to be performing in agreement with the simulations.

Published in:

Plasma Science, IEEE Transactions on  (Volume:41 ,  Issue: 1 )