By Topic

Saddle Point in the Minimax Converse for Channel Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yury Polyanskiy ; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA

A minimax metaconverse has recently been proposed as a simultaneous generalization of a number of classical results and a tool for the nonasymptotic analysis. In this paper, it is shown that the order of optimizing the input and output distributions can be interchanged without affecting the bound. In the course of the proof, a number of auxiliary results of separate interest are obtained. In particular, it is shown that the optimization problem is convex and can be solved in many cases by the symmetry considerations. As a consequence, it is demonstrated that in the latter cases, the (multiletter) input distribution in information-spectrum (Verdú-Han) converse bound can be taken to be a (memoryless) product of single-letter ones. A tight converse for the binary erasure channel is rederived by computing the optimal (nonproduct) output distribution. For discrete memoryless channels, a conjecture of Poor and Verdú regarding the tightness of the information spectrum bound on the error exponents is resolved in the negative. Concept of the channel symmetry group is established and relations with the definitions of symmetry by Gallager and Dobrushin are investigated.

Published in:

IEEE Transactions on Information Theory  (Volume:59 ,  Issue: 5 )