By Topic

Use of Ultracapacitors and Batteries for Efficient Energy Management in Wind–Diesel Hybrid System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tankari, M.A. ; CERTES Lab. (Centre d'Etudes et de Rech. en Thermique, Paris-Est Creteil Univ., Creteil, France ; Camara, M.B. ; Dakyo, B. ; Lefebvre, G.

The interconnection of the wind generator (WG) and the diesel generator (DG) induces some interactions on the common coupling point. These interactions are studied in this paper with the aim of identifying the system limits in performance and proposing an alternative solution. Due to the fast fluctuations of the WG and the DG slow dynamics, ultracapacitors and batteries are used for improving the hybrid system performances and reducing the fuel consumption. The dc-bus voltage is controlled by the diesel engine while providing a smoothed current. To ensure optimized life cycle cost and performance, a lifetime-estimation-based method is proposed. In this method, a rainflow counting method is applied to size the storage devices by taking into account the actual conditions of the system operation. The experimental test bench is designed in a reduced scale. Some simulations and experimental results are presented and analyzed.

Published in:

Sustainable Energy, IEEE Transactions on  (Volume:4 ,  Issue: 2 )