By Topic

The Sensitivity of Tropical Rainfall Estimation From Satellite to the Configuration of the Microwave Imager Constellation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chambon, P. ; Goddard Space Flight Center, NASA, Greenbelt, MD, USA ; Roca, R. ; Jobard, I. ; Capderou, M.

The availability of rainfall-related measurements from space has greatly increased from the late 1980s with the Defense Meteorological Satellite Program and the launch of the Tropical Rainfall Measuring Mission in 1997 to the forthcoming Global Precipitation Measurement (GPM) program (GPM mission) whose core satellite is to be launched in 2014. The rainfall observing systems have become a constellation enhancing the frequency of measurements all over the globe. In this letter, the Megha-Tropiques TAPEER-BRAIN level-4 rainfall product is considered to explore what impacts the configuration of a microwave imager constellation has on accumulated rainfall and associated sampling error estimates at one-degree/one-day resolution in the tropics. One of the main findings of this letter is that sun-synchronous satellites providing observations separated of time intervals close to rainfall autocorrelation periods result only in small improvements of TAPEER-BRAIN quantitative precipitation estimations (i.e., rain and error estimations). By comparison, it is shown that the GPM constellation of satellites, particularly with satellites on low-inclination “equatorial” orbits, has a high contribution to the improvements of rain and error estimates. The methodology developed in this letter could be also useful to explore the sensitivity of rainfall estimates at finer space and timescales.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:10 ,  Issue: 5 )