Cart (Loading....) | Create Account
Close category search window

Identification of Malicious Nodes in Peer-to-Peer Streaming: A Belief Propagation-Based Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gaeta, R. ; Dipt. di Inf., Univ. di Torino, Turin, Italy ; Grangetto, M.

Peer-to-peer streaming has witnessed a great success thanks to the possibility of aggregating resources from all participants. Nevertheless, performance of the entire system may be highly degraded due to the presence of malicious peers that share bogus data on purpose. In this paper, we propose to use a statistical inference technique, namely, belief propagation (BP), to estimate the probability of peers being malicious. The detection algorithm is run by a set of trusted monitor nodes that receives notification messages (checks) from peers whenever they obtain a chunk of data; these checks contain the list of the chunk uploaders and a flag to mark the chunk as polluted or clean. Peers are able to detect if the received chunk is polluted or not but, since multiparty download is employed, they are not capable to identify the source(s) of bogus blocks. This problem definition allows us to define a factor graph of peers and checks on which an incremental version of the belief propagation algorithm is run by the monitor nodes to infer the probability of each peer being a malicious one. We evaluate the accuracy, robustness, and complexity of our technique by running a real peer-to-peer application on PlanetLab. We show that the proposed approach is very accurate and robust against malicious nodes misbehaving (different pollution intensity, presence of fake checks, churning, and total uncooperation from malicious nodes), increasing number and colluding behavior of malicious nodes.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:24 ,  Issue: 10 )

Date of Publication:

Oct. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.