By Topic

Reinforecement learning-based optimal tracking control for wheeled mobile robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nguyen Tan Luy ; Div. of Autom. Electron., Ho Chi Minh Univ. of Ind., Ho Chi Minh City, Vietnam

This paper proposes a new method to design a reinforcement learning-based integrated kinematic and dynamic tracking control scheme for a nonholonomic wheeled mobile robot. The scheme uses just only one neural network to design an online adaptive synchronous policy iteration algorithm implemented as an actor critic structure. Our tuning law for the single neural network not only learns online a tracking-HJB equation to approximate both the optimal cost and the optimal control law but also guarantees closed-loop stability in real-time. The convergence and stability of the overall system are proven by Lyapunov theory. The simulation results for wheeled mobile robot verify the effectiveness of the proposed controller.

Published in:

Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2012 IEEE International Conference on

Date of Conference:

27-31 May 2012