By Topic

Neural Network-Based Active Learning in Multivariate Calibration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ukil, A. ; ABB Corp. Res., Baden-Dättwil, Switzerland ; Bernasconi, J.

In chemometrics, data from infrared or near-infrared (NIR) spectroscopy are often used to identify a compound or to analyze the composition of a material. This involves the calibration of models that predict the concentration of material constituents from the measured NIR spectrum. An interesting aspect of multivariate calibration is to achieve a particular accuracy level with a minimum number of training samples, as this reduces the number of laboratory tests and thus the cost of model building. In these chemometric models, the input refers to a proper representation of the spectra and the output to the concentrations of the sample constituents. The search for a most informative new calibration sample thus has to be performed in the output space of the model, rather than in the input space as in conventional modeling problems. In this paper, we propose to solve the corresponding inversion problem by utilizing the disagreements of an ensemble of neural networks to represent the prediction error in the unexplored component space. The next calibration sample is then chosen at a composition where the individual models of the ensemble disagree most. The results obtained for a realistic chemometric calibration example show that the proposed active learning can achieve a given calibration accuracy with less training samples than random sampling.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:42 ,  Issue: 6 )