By Topic

A Multimodal Human–Robot Interface to Drive a Neuroprosthesis for Tremor Management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Juan Álvaro Gallego ; Bioengineering Group, Consejo Superior de Investigaciones Cientficas, Spain ; Jaime Ibanez ; Jakob Lund Dideriksen ; José Ignacio Serrano
more authors

Tremor is the most prevalent movement disorder, and its incidence is increasing with aging. In spite of the numerous therapeutic solutions available, 65% of those suffering from upper limb tremor report serious difficulties during their daily living. This gives rise to research on different treatment alternatives, amongst which wearable robots that apply selective mechanical loads constitute an appealing approach. In this context, the current work presents a multimodal human-robot interface to drive a neuroprosthesis for tremor management. Our approach relies on the precise characterization of the tremor to modulate a functional electrical stimulation system that compensates for it. The neuroprosthesis is triggered by the detection of the intention to move derived from the analysis of electroencephalographic activity, which provides a natural interface with the user. When a prediction is delivered, surface electromyography serves to detect the actual onset of the tremor in the presence of volitional activity. This information in turn triggers the stimulation, which relies on tremor parameters-amplitude and frequency-derived from a pair of inertial sensors that record the kinematics of the affected joint. Surface electromyography also yields a first characterization of the tremor, together with precise information on the preferred stimulation site. Apart from allowing for an optimized performance of the system, our multimodal approach permits the implementation of redundant methods to both enhance the reliability of the system and adapt to the specific needs of different users. Results with a representative group of patients illustrate the performance of the interface presented here and demonstrate its feasibility.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:42 ,  Issue: 6 )