By Topic

Nature-Inspired Techniques in the Context of Fraud Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Behdad, M. ; Dept. of Comput. Sci. & Software Eng., Univ. of Western Australia, Perth, WA, Australia ; Barone, L. ; Bennamoun, M. ; French, T.

Electronic fraud is highly lucrative, with estimates suggesting these crimes to be worth millions of dollars annually. Because of its complex nature, electronic fraud detection is typically impractical to solve without automation. However, the creation of automated systems to detect fraud is very difficult as adversaries readily adapt and change their fraudulent activities which are often lost in the magnitude of legitimate transactions. This study reviews the most popular types of electronic fraud and the existing nature-inspired detection methods that are used for them. The common characteristics of electronic fraud are examined in detail along with the difficulties and challenges that these present to computational intelligence systems. Finally, open questions and opportunities for further work, including a discussion of emerging types of electronic fraud, are presented to provide a context for ongoing research.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:42 ,  Issue: 6 )