By Topic

Local Directional Number Pattern for Face Analysis: Face and Expression Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ramirez Rivera, A. ; Dept. of Comput. Eng., Kyung Hee Univ., Yongin, South Korea ; Rojas Castillo ; Oksam Chae

This paper proposes a novel local feature descriptor, local directional number pattern (LDN), for face analysis, i.e., face and expression recognition. LDN encodes the directional information of the face's textures (i.e., the texture's structure) in a compact way, producing a more discriminative code than current methods. We compute the structure of each micro-pattern with the aid of a compass mask that extracts directional information, and we encode such information using the prominent direction indices (directional numbers) and sign-which allows us to distinguish among similar structural patterns that have different intensity transitions. We divide the face into several regions, and extract the distribution of the LDN features from them. Then, we concatenate these features into a feature vector, and we use it as a face descriptor. We perform several experiments in which our descriptor performs consistently under illumination, noise, expression, and time lapse variations. Moreover, we test our descriptor with different masks to analyze its performance in different face analysis tasks.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 5 )
Biometrics Compendium, IEEE