Cart (Loading....) | Create Account
Close category search window

Identification of Auto-Regressive Exogenous Hammerstein Models Based on Support Vector Machine Regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Al-Dhaifllah, M. ; Dept. of Syst. Eng., King Fahd Univ. of Pet. & Miner., Dhahran, Saudi Arabia ; Westwick, D.T.

This paper extends the algorithms used to fit standard support vector machines (SVMs) to the identification of auto-regressive exogenous (ARX) input Hammerstein models consisting of a SVM, which models the static nonlinearity, followed by an ARX representation of the linear element. The model parameters can be estimated by minimizing an ε-insensitive loss function, which can be either linear or quadratic. In addition, the value of the uncertainty level, ε, can be specified by the user, which gives control over the sparseness of the solution. The effects of these choices are demonstrated using both simulated and experimental data.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:21 ,  Issue: 6 )

Date of Publication:

Nov. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.