Cart (Loading....) | Create Account
Close category search window
 

Instantaneous Frequency Estimation of Multicomponent Nonstationary Signals Using Multiview Time-Frequency Distributions Based on the Adaptive Fractional Spectrogram

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Khan, N.A. ; Dept. of Electr. Eng., Qatar Univ., Doha, Qatar ; Boashash, B.

This letter presents a novel algorithm to compute the instantaneous frequency (IF) of a multicomponent nonstationary signal using a combination of fractional spectrograms (FS). A high resolution time frequency distribution (TFD) is defined by combining FS computed using windows of varying lengths and chirp rates. The IF of individual signal components is then computed by applying a peak detection and component extraction procedure. The mean square error (MSE) of IF estimates computed with the AFS is lower than the MSE of IF estimates obtained from other TFDs for SNR varying from -5 dB to 16 dB.

Published in:

Signal Processing Letters, IEEE  (Volume:20 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.