Cart (Loading....) | Create Account
Close category search window

Deploying Sensors for Gravity Measurement in a Body-Area Inertial Sensor Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wu, C.-H. ; Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan ; Tseng, Y.-C.

This paper deals with human posture tracking by deploying accelerometers on a human body. One fundamental issue in such scenarios is how to calculate the gravity. This is very challenging especially when the human body parts keep on moving. Fortunately, it is likely that there is a point of the body that touches the ground in most cases. This allows sensors to collaboratively calculate the gravity vector. Assuming multiple accelerometers being deployed on a rigid part of a human body, a recent work proposes a data fusion method to estimate the gravity vector on that rigid part. However, finding the optimal deployment of sensors that minimizes the estimation error of the gravity vector is not addressed. In this paper, we formulate the deployment optimization problem and propose two heuristics, called Metropolis-based method and largest-inter-distance-based method. Simulation and real experimental results show that our schemes are quite effective in finding near-optimal solutions for a variety of rigid body geometries.

Published in:

Sensors Journal, IEEE  (Volume:13 ,  Issue: 5 )

Date of Publication:

May 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.