Cart (Loading....) | Create Account
Close category search window
 

Autonomous Mobile Mesh Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei-Liang Shen ; Res. Centerfor IT Innovation, Acad. Sinica, Taipei, Taiwan ; Chung-Shiuan Chen ; Lin, K.C.-J. ; Hua, K.A.

Mobile ad hoc networks (MANETs) are ideal for situations where a fixed infrastructure is unavailable or infeasible. Today's MANETs, however, may suffer from network partitioning. This limitation makes MANETs unsuitable for applications such as crisis management and battlefield communications, in which team members might need to work in groups scattered in the application terrain. In such applications, intergroup communication is crucial to the team collaboration. To address this weakness, we introduce in this paper a new class of ad-hoc network called Autonomous Mobile Mesh Network (AMMNET). Unlike conventional mesh networks, the mobile mesh nodes of an AMMNET are capable of following the mesh clients in the application terrain, and organizing themselves into a suitable network topology to ensure good connectivity for both intra- and intergroup communications. We propose a distributed client tracking solution to deal with the dynamic nature of client mobility, and present techniques for dynamic topology adaptation in accordance with the mobility pattern of the clients. Our simulation results indicate that AMMNET is robust against network partitioning and capable of providing high relay throughput for the mobile clients.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:13 ,  Issue: 2 )

Date of Publication:

Feb. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.