By Topic

Hole modeling and detour scheme for geographic routing in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yu, Fucai ; Department of Computer Engineering, Chungnam National University, Republic of Korea ; Park, Soochang ; Lee, Euisin ; Kim, Sang-Ha

Geographic routing has been considered as an attractive approach in wireless sensor networks, since it routes data packets by using location information rather than global topology information. In geographic routing schemes, packets are usually sent along the boundary of a hole by face routing to detour the hole. As result, all data flows which need to detour the hole are concentrated on the boundary of the hole. This hole detour scheme results in much more energy consumption for nodes at the hole boundary, and the energy exhaustion of hole boundary nodes enlarges the holes. This is referred to as a hole diffusion problem. The perimeter mode may also lead to data collisions on the hole boundary nodes if multiple data flows need to bypass a hole simultaneously. In this paper, we propose a hole modeling and detour scheme for geographic routing in wireless sensor networks. Our hole modeling and detour scheme can efficiently prevent hole diffusion, avoid the local minimum problem faced by geographic routing protocols, and reduce data collisions on the hole boundary nodes. Simulation results show that the proposed scheme is superior to the other protocols in terms of control overhead, average delivery delay and energy consumption.

Published in:

Communications and Networks, Journal of  (Volume:11 ,  Issue: 4 )