By Topic

A BLMS adaptive receiver for direct-sequence code division multiple access systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hamouda, W. ; Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, HEG 1M8, Canada ; McLane, Peter J.

We propose an efficient block least-mean-square (BLMS) adaptive algorithm, in conjunction with error control coding, for direct-sequence code division multiple access (DS-CDMA) systems. The proposed adaptive receiver incorporates decision feedback detection and channel encoding in order to improve the performance of the standard LMS algorithm in convolutionally coded systems. The BLMS algorithm involves two modes of operation: (i) The training mode where an uncoded training sequence is used for initial filter tap-weights adaptation, and (ii) the decision-directed where the filter weights are adapted, using the BLMS algorithm, after decoding/encoding operation. It is shown that the proposed adaptive receiver structure is able to compensate for the signal-to-noise ratio (SNR) loss incurred due to the switching from uncoded training mode to coded decision-directed mode. Our results show that by using the proposed adaptive receiver (with decision feedback block adaptation) one can achieve a much better performance than both the coded LMS with no decision feedback employed. The convergence behavior of the proposed BLMS receiver is simulated and compared to the standard LMS with and without channel coding. We also examine the steady-state bit-error rate (BER) performance of the proposed adaptive BLMS and standard LMS, both with convolutional coding, where we show that the former is more superior than the latter especially at large SNRs (SNR ≥ 9 dB).

Published in:

Communications and Networks, Journal of  (Volume:7 ,  Issue: 3 )