By Topic

Cross-Layer Metrics for Reliable Routing in Wireless Mesh Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Wireless mesh networks (WMNs) have emerged as a flexible and low-cost network infrastructure, where heterogeneous mesh routers managed by different users collaborate to extend network coverage. This paper proposes a novel routing metric, Expected Forwarded Counter (EFW), and two further variants, to cope with the problem of selfish behavior (i.e., packet dropping) of mesh routers in a WMN. EFW combines, in a cross-layer fashion, routing-layer observations of forwarding behavior with MAC-layer measurements of wireless link quality to select the most reliable and high-performance path. We evaluate the proposed metrics both through simulations and real-life deployments on two different wireless testbeds, performing a comparative analysis with On-Demand Secure Byzantine Resilient Routing (ODSBR) Protocol and Expected Transmission Counter (ETX). The results show that our cross-layer metrics accurately capture the path reliability and considerably increase the WMN performance, even when a high percentage of network nodes misbehave.

Published in:

IEEE/ACM Transactions on Networking  (Volume:21 ,  Issue: 3 )