By Topic

Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yao Hu ; Zhejiang University, Hangzhou ; Debing Zhang ; Jieping Ye ; Xuelong Li
more authors

Recovering a large matrix from a small subset of its entries is a challenging problem arising in many real applications, such as image inpainting and recommender systems. Many existing approaches formulate this problem as a general low-rank matrix approximation problem. Since the rank operator is nonconvex and discontinuous, most of the recent theoretical studies use the nuclear norm as a convex relaxation. One major limitation of the existing approaches based on nuclear norm minimization is that all the singular values are simultaneously minimized, and thus the rank may not be well approximated in practice. In this paper, we propose to achieve a better approximation to the rank of matrix by truncated nuclear norm, which is given by the nuclear norm subtracted by the sum of the largest few singular values. In addition, we develop a novel matrix completion algorithm by minimizing the Truncated Nuclear Norm. We further develop three efficient iterative procedures, TNNR-ADMM, TNNR-APGL, and TNNR-ADMMAP, to solve the optimization problem. TNNR-ADMM utilizes the alternating direction method of multipliers (ADMM), while TNNR-AGPL applies the accelerated proximal gradient line search method (APGL) for the final optimization. For TNNR-ADMMAP, we make use of an adaptive penalty according to a novel update rule for ADMM to achieve a faster convergence rate. Our empirical study shows encouraging results of the proposed algorithms in comparison to the state-of-the-art matrix completion algorithms on both synthetic and real visual datasets.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:35 ,  Issue: 9 )