Cart (Loading....) | Create Account
Close category search window
 

Toward a Theory of Statistical Tree-Shape Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Feragen, A. ; Dept. of Comput. Sci., Univ. of Copenhagen, Copenhagen, Denmark ; Lo, P. ; de Bruijne, M. ; Nielsen, M.
more authors

To develop statistical methods for shapes with a tree-structure, we construct a shape space framework for tree-shapes and study metrics on the shape space. This shape space has singularities which correspond to topological transitions in the represented trees. We study two closely related metrics on the shape space, TED and QED. QED is a quotient euclidean distance arising naturally from the shape space formulation, while TED is the classical tree edit distance. Using Gromov's metric geometry, we gain new insight into the geometries defined by TED and QED. We show that the new metric QED has nice geometric properties that are needed for statistical analysis: Geodesics always exist and are generically locally unique. Following this, we can also show the existence and generic local uniqueness of average trees for QED. TED, while having some algorithmic advantages, does not share these advantages. Along with the theoretical framework we provide experimental proof-of-concept results on synthetic data trees as well as small airway trees from pulmonary CT scans. This way, we illustrate that our framework has promising theoretical and qualitative properties necessary to build a theory of statistical tree-shape analysis.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 8 )

Date of Publication:

Aug. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.