By Topic

An adaptive power system stabilizer based on recurrent neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
He, J. ; Dept. of Electr. & Comput. Eng., Calgary Univ., Alta., Canada ; Malik, O.P.

Application of recurrent, neural networks in the design of an adaptive power system stabilizer (PSS) is presented in this paper. The architecture of the proposed adaptive PSS has two recurrent neural networks. One functions as a tracker to learn the dynamic characteristics of the power plant and the second one functions as a controller to damp the oscillations caused by the disturbances. In the proposed approach, the weights of the neural networks are updated on-line. Therefore, any new information available during actual control of the plant is considered. Simulation studies show that the artificial neural network (ANN) based PSS can provide very good damping over a wide range of operating conditions

Published in:

Energy Conversion, IEEE Transactions on  (Volume:12 ,  Issue: 4 )