By Topic

An adaptive power system stabilizer using on-line trained neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shamsollahi, P. ; Dept. of Electr. & Comput. Eng., Calgary Univ., Alta., Canada ; Malik, O.P.

This paper presents an approach to the design of an adaptive power system stabilizer (PSS) based on on-line trained neural networks. Only the inputs and outputs of the generator are measured and there is no need to determine the states of the generator. The proposed neural adaptive PSS (NAPSS) consists of an adaptive neuro-identifier (ANI), which tracks the dynamic characteristics of the plant, and an adaptive neuro-controller (ANC) to damp the low frequency oscillations. These two subnetworks are trained in an on-line mode utilizing the backpropagation method. The use of a single-element error vector along with a small network simplifies the learning algorithm in terms of computation time. The improvement of the dynamic performance of the system is demonstrated by simulation studies for a variety of operating conditions and disturbances

Published in:

Energy Conversion, IEEE Transactions on  (Volume:12 ,  Issue: 4 )