By Topic

A matrix converter-based topology for high power electric vehicle battery charging and V2G application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Harish. S. Krishnamoorthy ; Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA ; Pawan Garg ; Prasad. N. Enjeti

In this paper, a new three-phase converter topology based on a 3x1 matrix converter (MC) is proposed for Plug-in Hybrid or Battery (PHEV/BEV) electric transit buses. In the proposed approach, the MC directly converts the low frequency (50/60 Hz, three-phase) input to a high frequency (6 kHz, one-phase) AC output without a dc-link. The output of the matrix converter (MC) is then processed by a PWM rectifier via a high frequency (HF) isolation transformer to interface with the EV battery system. The MC-PWM rectifier system is made to operate like a dual active bridge (DAB), facilitating bi-directional power flow suitable for charging and Vehicle-to-Grid (V2G) application. The digital control of the system ensures that the input currents are of high quality under both charging and discharging operations. Due to the absence of dc-link electrolytic capacitors, power density of the proposed rectifier is expected to be higher. Analysis, design example and extended simulation results are presented for a three-phase 208 VLL, 50kW charger.

Published in:

IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society

Date of Conference:

25-28 Oct. 2012