By Topic

Control of a hybrid Energy Storage System using a three level neutral point clamped converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Etxeberria, A. ; ESTIA-Rech., Ecole Super. des Technol. Industrielles Av., Bidart, France ; Vechiu, I. ; Baudoin, S. ; Camblong, H.
more authors

The increasing penetration level of the Renewable Energy Sources (RES) and their variability can compromise the proper operation of an electrical grid. The microgrid is being analysed as a solution to obtain a high penetration of RES in a controlled way. Due to the stochastic nature of the RES, the Energy Storage Systems must be used to maintain the energy and power balance between generation and demand. The limits of the storage technologies that are nowadays available make it necessary to associate more than one storage technology creating a Hybrid Energy Storage System (HESS) in order to satisfy the specifications of a microgrid application: high energy autonomy, power capacity and fast response. This paper analyses by means of simulations and experimentally the feasibility of a promising topology based on a Three Level Neutral Point Clamped (3LNPC) converter. The reduced power losses, improved THD and the fact of being an integrated solution are the advantages of this system. An islanding operation case study where a HESS formed by a SuperCapacitor (SC) and a Vanadium Redox Battery (VRB) supplies power to a resistive AC load that is suddenly reduced is analysed by means of simulations and experimentally. The simulation and experimental results prove the feasibility of the presented topology and of the control system to divide the power between the SC (fast power variations) and the VRB (low frequency part of the power).

Published in:

IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society

Date of Conference:

25-28 Oct. 2012