Cart (Loading....) | Create Account
Close category search window

Evaluation of different carrier-based PWM methods for modular multilevel converters for HVDC application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Hassanpoor, A. ; Sch. of Electr. Eng., R. Inst. of Technol. (KTH), Stockholm, Sweden ; Norrga, S. ; Nee, H. ; Angquist, L.

The outstanding features of modular multilevel converters (M2C) make it attractive for high voltage direct current (HVDC) systems. In order to achieve high efficiency in HVDC converter stations, the switching frequency and the capacitor voltage ripple of the converter should be minimized. A suitable modulation algorithm should achieve an optimal tradeoff between these two requirements. This paper evaluates different carrier-based PWM algorithms and discusses the most challenging technical aspects of an efficient M2C. It is observed that decoupling the waveform synthesis from the selection of which cell to switch at each instant has beneficial impact on operation performance. The evaluation is done by time-domain simulation considering a grid connected, three-phase M2C converter and an advanced control system. Results of this study can be used for implementing more economical HVDC converters.

Published in:

IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society

Date of Conference:

25-28 Oct. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.