Cart (Loading....) | Create Account
Close category search window

An autonomous wireless sensor network device powered by a RF energy harvesting system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dondi, D. ; DISMI, Univ. degli Studi di Modena e Reggio Emilia, Modena, Italy ; Scorcioni, S. ; Bertacchini, A. ; Larcher, L.
more authors

In this paper, we present an energetically autonomous wireless sensor network (WSN) device designed to enhance safety in vehicles capable to connect extra gear/equipment to the main chassis. The proposed system allows the vehicle stability control system to automatically recognize the connected trailer or implement through a purposely designed WSN device, which is integrated into trailer/implement and wirelessly sends its identification number. The WSN device we developed integrates also a novel RF energy harvesting circuit which gathers the energy from an 868MHz RF signal source, which is purposely transmitted from the vehicle towards the trailer or implement for remote powering. Measurements performed on fabricated WSN system prototypes show that the RF harvester can gather up to ≈50uW@3m from the RF power source with efficiency higher than 30% over a range of 10dBm. The combination of the RF energy harvesting circuit with the ultra-low power architecture and a custom task manager designed for the WSN system allows to further increase primary battery lifetime, making the wireless system capable to operate autonomously for several years.

Published in:

IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society

Date of Conference:

25-28 Oct. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.