By Topic

Torsional system parameter identification of turbine-generator sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. D. Brown ; Dept. of Power Syst. Eng., GE Electr. Distribution & Control, Schenectady, NY, USA ; C. Grande-Moran

Accurate low order linear models that represent the torsional motion of turbine-generator sets are needed for determining shaft torsional responses resulting from subsynchronous resonance conditions, electric system faults and planned/unplanned switching actions in the electric network. This paper outlines the theoretical background and the methodology used for identification of linear state-space models of turbine-generator systems. These analytic mass-spring-damper models are lumped-parameter approximations, which in reality represent a continuous nonlinear system. For transient torque studies these models are adequate representations of the torsional dynamics of interest. Reduced analytic models of any particular turbine-generator unit, however, usually do not match precisely the behavior of the real machine. The paper describes an optimization method that can give a more precise representation of a particular turbine-generator based on actual plant tests and an assumed model of that unit. The parameter identification process is illustrated using plant test data from a 618 MVA turbine-generator unit

Published in:

IEEE Transactions on Energy Conversion  (Volume:12 ,  Issue: 4 )