By Topic

Euclidian distance minimization of probability density functions for blind equalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Namyong Kim ; Dept. of Information & Communication Eng., Kangwon National University

Blind equalization techniques have been used in broadcast and multipoint communications. In this paper, two criteria of minimizing Euclidian distance between two probability density functions (PDFs) for adaptive blind equalizers are presented. For PDF calculation, Parzen window estimator is used. One criterion is to use a set of randomly generated desired symbols at the receiver so that PDF of the generated symbols matches that of the transmitted symbols. The second method is to use a set of Dirac delta functions in place of the PDF of the transmitted symbols. From the simulation results, the proposed methods significantly outperform the constant modulus algorithm in multipath channel environments.

Published in:

Journal of Communications and Networks  (Volume:12 ,  Issue: 5 )