By Topic

Delay-margin based traffic engineering for MPLS-DiffServ networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ashour, Mohamed ; Department of Information Technology Engineering, German University in Cairo, Egypt ; Tho Le-Ngoc

This paper presents a delay-margin based traffic engineering (TE) approach to provide end-to-end quality of service (QoS) in multi-protocol label switching (MPLS) networks using differentiated services (DiffServ) at the link level. The TE, including delay, class, and route assignments, is formulated as a nonlinear optimization problem reflecting the inter-class and inter-link dependency introduced by DiffServ and end-to-end QoS requirements. Three algorithms are used to provide a solution to the problem: The first two, centralized offline route configuration and link-class delay assignment, operate in the convex areas of the feasible region to consecutively reduce the objective function using a per-link per-class decomposition of the objective function gradient. The third one is a heuristic that promotes/demotes connections at different links in order to deal with concave areas that may be produced by a trunk route usage of more than one class on a given link. Approximations of the three algorithms suitable for on-line distributed TE operation are also derived. Simulation is used to show that proposed approach can increase the number of users while maintaining end-to-end QoS requirements.

Published in:

Communications and Networks, Journal of  (Volume:10 ,  Issue: 3 )