By Topic

Bandwidth-efficient OFDM transmission with iterative cyclic prefix reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jong-Bu Lim ; Department of Electronic and Electrical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea ; Eung-Sun Kim ; Cheol-Jin Park ; Hui-Chul Won
more authors

For orthogonal frequency division multiplexing (OFDM), cyclic prefix (CP) should be longer than the length of channel impulse response, resulting in a loss of bandwidth efficiency. In this paper, we describe a new technique to restore the cyclicity of the received signal when the CP is not sufficient for OFDM systems. The proposed technique efficiently restores the cyclicity of the current received symbol by adding the weighted next received symbol to the current received symbol. Iterative CP reconstruction (CPR) procedure, based on the residual intersymbol interference cancellation (RISIC) algorithm, is analyzed and compared to the RISIC. In addition, we apply the CPR method to Alamouti space-time block coded (STBC) OFDM system. It is shown that in the STBC OFDM, tail cancellation as well as cyclic reconstruction of the CPR procedure should be repeated. The computational complexities of the RISIC, the proposed CPR, the RISIC with STBC, and the proposed CPR with STBC are analyzed and their performances are evaluated in multipath fading environments. We also propose an iterative channel estimation (CE) method for OFDM with insufficient CP. Further, we discuss the CE method for the STBC OFDM system with the CPR. It is shown that the CPR technique with the proposed CE method minimizes the loss of bandwidth efficiency due to the use of CP, without sacrificing the diversity gain of the STBC OFDM system.

Published in:

Journal of Communications and Networks  (Volume:10 ,  Issue: 3 )