By Topic

Performance analysis of space-time codes in realistic propagation environments: A moment generating function-based approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tharaka A. Lamahewa ; Department of Information Engineering, Research School of Information Sciences and Engineering, the Australian National University, Canberra, ACT 0200, Australia ; Marvin K. Simon ; Rodney A. Kennedy ; Thushara D. Abhayapala

In this paper, we derive analytical expressions for the exact pairwise error probability (PEP) of a space-time coded system operating over spatially correlated fast (constant over the duration of a symbol) and slow (constant over the length of a code word) fading channels using a moment-generating function-based approach. We discuss two analytical techniques that can be used to evaluate the exact-PEPs (and therefore, approximate the average bit error probability (BEP)) in closed form. These analytical expressions are more realistic than previously published PEP expressions as they fully account for antenna spacing, antenna geometries (uniform linear array, uniform grid array, uniform circular array, etc.) and scattering models (uniform, Gaussian, Laplacian, Von-mises, etc.). Inclusion of spatial information in these expressions provides valuable insights into the physical factors determining the performance of a space-time code. Using these new PEP expressions, we investigate the effect of antenna spacing, antenna geometries and azimuth power distribution parameters (angle of arrival/departure and angular spread) on the performance of a four-state QPSK space-time trellis code proposed by Tarokh et al. for two transmit antennas.

Published in:

Journal of Communications and Networks  (Volume:7 ,  Issue: 4 )