Cart (Loading....) | Create Account
Close category search window
 

Efficient Multitemplate Learning for Structured Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qi Mao ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Tsang, I.W.-H.

Conditional random fields (CRF) and structural support vector machines (structural SVM) are two state-of-the-art methods for structured prediction that captures the interdependencies among output variables. The success of these methods is attributed to the fact that their discriminative models are able to account for overlapping features on all input observations. These features are usually generated by applying a given set of templates on labeled data, but improper templates may lead to degraded performance. To alleviate this issue, in this paper we propose a novel multiple template learning paradigm to learn structured prediction and the importance of each template simultaneously, so that hundreds of arbitrary templates could be added into the learning model without caution. This paradigm can be formulated as a special multiple kernel learning problem with an exponential number of constraints. Then we introduce an efficient cutting-plane algorithm to solve this problem in the primal and present its convergence. We also evaluate the proposed learning paradigm on two widely studied structured prediction tasks, i.e., sequence labeling and dependency parsing. Extensive experimental results show that the proposed method outperforms CRFs and structural SVMs because of exploiting the importance of each template. Complexity analysis and empirical results also show that the proposed method is more efficient than Online multikernel learning on very sparse and high-dimensional data. We further extend this paradigm for structured prediction using generalized p-block norm regularization with p >; 1, and experiments show competitive performances when p ∈ [1,2).

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.