By Topic

Stochastic Behavioral Modeling and Analysis for Analog/Mixed-Signal Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fang Gong ; Dept. of Electr. Eng., Univ. of California, Los Angeles, Los Angeles, CA, USA ; Basir-Kazeruni, S. ; Lei He ; Hao Yu

It has become increasingly challenging to model the stochastic behavior of analog/mixed-signal (AMS) circuits under large-scale process variations. In this paper, a novel moment-matching-based method has been proposed to accurately extract the probabilistic behavioral distributions of AMS circuits. This method first utilizes Latin hypercube sampling coupling with a correlation control technique to generate a few samples (e.g., sample size is linear with number of variable parameters) and further analytically evaluate the high-order moments of the circuit behavior with high accuracy. In this way, the arbitrary probabilistic distributions of the circuit behavior can be extracted using moment-matching method. More importantly, the proposed method has been successfully applied to high-dimensional problems with linear complexity. The experiments demonstrate that the proposed method can provide up to 1666X speedup over crude Monte Carlo method for the same accuracy.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:32 ,  Issue: 1 )