By Topic

Power-Aware Minimum NBTI Vector Selection Using a Linear Programming Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Firouzi, F. ; Karlsruhe Inst. of Technol., Karlsruhe, Germany ; Kiamehr, S. ; Tahoori, M.B.

Transistor aging is a major reliability concern for nanoscale CMOS technology that can significantly reduce the operation lifetime of very large-scale integration chips. Negative bias temperature instability (NBTI) is a major contributor to transistor aging that affects pMOS transistors. On the other hand, leakage power is becoming a dominant factor of the total power with successive technology scaling. Since the input combinations applied to a logic core have a significant impact on both NBTI and leakage power, input vector control can be used to optimize both phenomena during idle cycles. In this paper, we present an efficient input vector selection technique based on linear programming for cooptimizing the NBTI-induced delay degradation and leakage power consumption during standby mode. Since the NBTI-induced delay degradation and leakage power are not affected by the input vector in the same direction, we provide a pareto curve based on both phenomena. A suitable point from such a pareto curve is chosen based on circuit conditions and requirements during runtime.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:32 ,  Issue: 1 )