By Topic

Application of an NVNA-Based System and Load-Independent X-Parameters in Analytical Circuit Design Assisted by an Experimental Search Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Pelaez-Perez, A.M. ; SSR Dept., Univ. Politec. de Madrid, Madrid, Spain ; Woodington, S. ; Fernandez-Barciela, M. ; Tasker, P.J.
more authors

Recently, X -parameters have been introduced to model active device nonlinear behavior. In addition to providing a measurement-based tool to numerically predict nonlinear device behavior in computer-aided design, they can also provide the designer of nonlinear circuits an analytical design tool. Exploiting this design tool aspect, this work presents an application that combines the nonlinear vector network analyzer PNA-X and a passive tuner to extract a transistor load-independent X -parameter model, focused around targeted circuit impedances for optimal performance. Furthermore, an experimental search algorithm, based on X-parameters analytical computations and developed by Peláez-Pérez , has been used and experimentally validated in this paper, aimed to speed up the characterization and design process, minimizing the number of load-pull measurements necessary to provide an accurate transistor X-parameter model for use in analytical and/or numerical circuit design.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:61 ,  Issue: 1 )