By Topic

On the Application of Clustering Techniques for Office Buildings' Energy and Thermal Comfort Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The aim of this paper is to develop and propose an integrated classification method for the determination of office buildings' energy and thermal comfort rating classes. The applications of five clustering techniques: Hierarchical, K-Means, Gaussian Mixture Models, Fuzzy, and Neural algorithms to a large building dataset are tested in order to investigate the appropriate method for establishing energy and thermal comfort classifications. For the clustering results testing, three internal validity indices: the Silhouette, the Davies Bouldin, and the Dunn Index have been applied, in order to select the appropriate number of clusters and the most efficient algorithm for each case. The proposed classification approach is also evaluated through comparisons with the methodologies that are recommended by the European standards. The classification results are used for a parametric study of common buildings' characteristics in each rating class, in order to provide with a tool for adopting improvement recommendations for buildings' energy efficiency.

Published in:

IEEE Transactions on Smart Grid  (Volume:3 ,  Issue: 4 )