By Topic

Simulations of Breakdown Voltage of Coplanar Electrodes Microplasma Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ling-Guo Meng ; Sch. of Phys., Shandong Univ., Jinan, China ; Jian-Ping Xing ; Yuan-Jie Lv ; Zhi-Hu Liang
more authors

Microplasmas have attracted more and more attention due to their unique characteristics, and breakdown voltage is an important parameter for microplasma devices, particularly for addressable arrays of microplasma devices. However, small changes in shape or interface would bring obvious change in breakdown voltage. In this paper, five groups of simulations of breakdown voltage were operated under different geometry parameters to develop the trend of breakdown voltage following geometrical size under different operation pressures. The drift-diffusion approximation model is adopted in these simulations. The simulation results show that breakdown voltage will increase with the increase in the microcavity depth and thickness of the dielectric. Therefore, the breakdown voltage will reduce when microcavity width increases. The less is the microcavity size, the less is breakdown voltage, and the higher is the pressure corresponding to minimum breakdown voltage, which shows that the decrease in microcavity size can develop operation pressure and decrease breakdown voltage obviously.

Published in:

IEEE Transactions on Plasma Science  (Volume:41 ,  Issue: 1 )