By Topic

The Cycle Consistency Matrix Approach to Absorbing Sets in Separable Circulant-Based LDPC Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiadong Wang ; Qualcomm Technol., Inc., San Diego, CA, USA ; Dolecek, L. ; Wesel, R.D.

For low-density parity-check (LDPC) codes operating over additive white Gaussian noise channels and decoded using message-passing decoders with limited precision, absorbing sets have been shown to be a key factor in error floor behavior. Focusing on this scenario, this paper introduces the cycle consistency matrix (CCM) as a powerful analytical tool for characterizing and avoiding absorbing sets in separable circulant-based (SCB) LDPC codes. SCB codes include a wide variety of regular LDPC codes such as array-based LDPC codes as well as many common quasi-cyclic codes. As a consequence of its cycle structure, each potential absorbing set in an SCB LDPC code has a CCM, and an absorbing set can be present in an SCB LDPC code only if the associated CCM has a nontrivial null space. CCM-based analysis can determine the multiplicity of an absorbing set in an SCB code, and CCM-based constructions avoid certain small absorbing sets completely. While these techniques can be applied to an SCB code of any rate, lower rate SCB codes can usually avoid small absorbing sets because of their higher variable-node degree. This paper focuses attention on the high-rate scenario in which the CCM constructions provide the most benefit. Simulation results demonstrate that under limited-precision decoding the new codes have steeper error-floor slopes and can provide one order of magnitude of improvement in the low-frame-error-rate region.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 4 )