By Topic

New Pinning Strategies for Second-Generation Wires

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Solovyov, V.F. ; Brookhaven Nat. Lab., Upton, NY, USA ; Qiang Li ; Rupich, M. ; Sathyamurthy, S.
more authors

In the last several years, second-generation (2G) superconducting wires have been considered for applications in rotating machines operating in the 20-40 K temperature range in 1-3 T magnetic fields. Here, we outline several novel strategies for improving the low-temperature performance of second-generation wires by utilizing the in-plane strain of thick YBCO layers manufactured by the reel-to-reel metal-organic deposition (MOD) method. First, we show that he strain-induced pinning mechanism analysis, based on the Eshelby model of the elastically-strained composites, predicts that small YBCO grain size is a critical component of a strong pinning architecture. Second, we describe how the in-plane strain can be controlled by processing parameters. Systematic changes of the in-plane structure and YBCO grain size are mapped with respect to the YBCO stability line and the Cu2O-CuO line on the Bormann-Hammond diagram. It is demonstrated that the optimum critical current density is the result of a trade-off between YBCO grain coupling and the strain-induced pinning.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:23 ,  Issue: 3 )