By Topic

Relationship Between Cyclone Intensities and Sea Surface Temperature in the Tropical Indian Ocean

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
M. M. Ali ; Atmosphere and Ocean Sciences Group, National Remote Sensing Centre, Hyderabad, India ; D. Swain ; Tina Kashyap ; J. P. McCreary
more authors

In most cyclone prediction models, sea surface temperature (SST) is the only oceanographic input, even though storms are known to be impacted by the thermal energy available through oceanic heat content, not just by SST alone. In the tropical Indian Ocean (TIO; 30° S -30° N, 30-120° E), there are no studies that examine the relationship between instantaneous cyclone intensity (CI) and SST as a function of time. Here, we explore that relationship using SST data from the Tropical Rainfall Measuring Mission Microwave Imager and CI data (maximum sustained winds) from the Joint Typhoon Warning Centre. We find that out of 75 TIO cyclones studied during 1998-2011, more than 50% of the cyclones have no significant correlation between CI and SST. The numbers having significant negative (positive) correlations are 31 (3), 13 (10), and 17 (14) with SST leading CI by one, two, and three days, respectively. These results demonstrate that SST is not a useful indicator of CI in the TIO.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:10 ,  Issue: 4 )