By Topic

Effective Diagnosis of Breast Cancer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Parvin, H. ; Young Res. Club, Islamic Azad Univ., Nourabad Mamasani, Iran ; Parvin, S.

A famous field in which it is very possible for each typical dataset to be imbalanced and hard is physician recognition. In such systems there are many customers where a few of them are patient and the others are healthy. So it is very common and possible for a dataset to emerge an imbalanced one. In such a system it is desired to distinguish a patient from a mixture of customers. In a breast cancer detection that is a special case of the mentioned systems, it is desired to discriminate the patient clients from healthy ones. This paper presents an algorithm which is well-suited for and applicable to the field of severe imbalanced datasets. It is efficient in terms of both of the speed and the efficacy of learning. The experimental results show that the performance of the proposed algorithm outperforms some of the best methods in the literature.

Published in:

Artificial Intelligence (MICAI), 2012 11th Mexican International Conference on

Date of Conference:

Oct. 27 2012-Nov. 4 2012