By Topic

Haptic classification and recognition of objects using a tactile sensing forearm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bhattacharjee, T. ; Center for Robot. & Intell. Machines, Georgia Inst. of Technol., Atlanta, GA, USA ; Rehg, J.M. ; Kemp, C.C.

In this paper, we demonstrate data-driven inference of mechanical properties of objects using a tactile sensor array (skin) covering a robot's forearm. We focus on the mobility (sliding vs. fixed), compliance (soft vs. hard), and identity of objects in the environment, as this information could be useful for efficient manipulation and search. By using the large surface area of the forearm, a robot could potentially search and map a cluttered volume more efficiently, and be informed by incidental contact during other manipulation tasks. Our approach tracks a contact region on the forearm over time in order to generate time series of select features, such as the maximum force, contact area, and contact motion. We then process and reduce the dimensionality of these time series to generate a feature vector to characterize the contact. Finally, we use the k-nearest neighbor algorithm (k-NN) to classify a new feature vector based on a set of previously collected feature vectors. Our results show a high cross-validation accuracy in both classification of mechanical properties and object recognition. In addition, we analyze the effect of taxel resolution, duration of observation, feature selection, and feature scaling on the classification accuracy.

Published in:

Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on

Date of Conference:

7-12 Oct. 2012