By Topic

Control of a magnetic microrobot navigating in microfluidic arterial bifurcations through pulsatile and viscous flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Belharet, K. ; Lab. PRISME, Ecole Nat. Super. d''Ing. de Bourges, Bourges, France ; Folio, D. ; Ferreira, A.

Navigating in bodily fluids to perform targeted diagnosis and therapy has recently raised the problem of robust control of magnetic microrobots under real endovascular conditions. Various control approaches have been proposed in the literature but few of them have been experimentally validated. In this paper, we point out the problem of navigation controllability of magnetic microrobots in high viscous fluids and under pulsatile flow for endovascular applications. We consider the experimental navigation along a desired trajectory, in a simplified millimeter-sized arterial bifurcation, operating in fluids at the low-Reynolds-number regime where viscous drag significantly dominates over inertia. Different viscosity environments are tested under a systolic pulsatile flow compatible with heart beating. The control performances in terms tracking, robustness and stability are then experimentally demonstrated.

Published in:

Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on

Date of Conference:

7-12 Oct. 2012