Cart (Loading....) | Create Account
Close category search window

A brain-machine interface to navigate mobile robots along human-like paths amidst obstacles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Akce, A. ; Dept. of Comput. Sci., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Norton, J. ; Bretl, T.

This paper presents an interface that allows a human user to specify a desired path for a mobile robot in a planar workspace with noisy binary inputs that are obtained at low bit-rates through an electroencephalograph (EEG). We represent desired paths as geodesics with respect to a cost function that is defined so that each path-homotopy class contains exactly one (local) geodesic. We apply max-margin structured learning to recover a cost function that is consistent with observations of human walking paths. We derive an optimal feedback communication protocol to select a local geodesic-equivalently, a path-homotopy class-using a sequence of noisy bits. We validate our approach with experiments that quantify both how well our learned cost function characterizes human walking data and how well human subjects perform with the resulting interface in navigating a simulated robot with EEG.

Published in:

Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on

Date of Conference:

7-12 Oct. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.