By Topic

Everything robots always wanted to know about housework (but were afraid to ask)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nyga, D. ; Intell. Autonomous Syst. Group, Tech. Univ. Munchen, München, Germany ; Beetz, M.

In this paper we discuss the problem of action-specific knowledge processing, representation and acquisition by autonomous robots performing everyday activities. We report on a thorough analysis of the household domain, which has been performed on a large corpus of natural-language instructions from the Web and underlines the supreme need of action-specific knowledge for robots acting in those environments. We introduce the concept of Probabilistic Robot Action Cores (PRAC) that are well-suited for encoding such knowledge in a probabilistic first-order knowledge base. We additionally show how such a knowledge base can be acquired by natural language and we address the problems of incompleteness, underspecification and ambiguity of naturalistic action specifications and point out how PRAC models can tackle those.

Published in:

Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on

Date of Conference:

7-12 Oct. 2012