By Topic

Dynamic path planning in robot-aided optical manipulation of biological cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

This paper presents a path planning approach to the transportation of biological cells with combined robotics and optical tweezers technologies. A rapid path planner based on RRT (Rapidly-exploring random trees) algorithm is applied to find a collision-free path for automatic cell transportation. The optical tweezers are employed to trap and move the cell along the generated path toward a pre-specified goal position. Extending our early reported work on static path planning, a new dynamic path planner that considers the environmental change due to the Brownian movement of the cells is developed. This dynamic path planner can successfully enable the trapped cell to avoid collisions with other cells during transportation in a dynamic environment. Experiments on transporting yeast cells are performed to demonstrate the effectiveness of the proposed approach.

Published in:

Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on

Date of Conference:

7-12 Oct. 2012