Cart (Loading....) | Create Account
Close category search window
 

Non-central catadioptric cameras visual servoing for mobile robots using a radial camera model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tahri, O. ; Inst. for Syst. & Robot., Coimbra, Portugal ; Araujo, H.

Catadioptric cameras combine conventional cameras and mirrors to create omnidirectional sensors providing 360° panoramic views of a scene. Modeling such cameras has been subject of significant research interest in the computer vision community leading to a deeper understanding of the image properties and also to different models for different types of configurations. Visual servoing applications using catadioptric cameras have essentially been using central cameras and the corresponding unified projection model. So far only in very few cases more general models have been used. In this paper we address the problem of visual servoing using the so-called the radial model. The radial model can be applied to many camera configurations and in particular to non-central catadioptric systems with mirror shapes that are symmetric around the optical axis. In this case we show that the radial model can be used with a non-central catadioptric camera to allow effective image-based visual servoing (IBVS) of a mobile robot. Using this model, which is valid for a large set of catadioptric cameras, new visual features are proposed to control the degrees of freedom of a mobile robot moving on a plane. Several simulation results are provided to validate the effectiveness of such features.

Published in:

Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on

Date of Conference:

7-12 Oct. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.